If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x)^2+x^2=490
We move all terms to the left:
(3x)^2+x^2-(490)=0
We add all the numbers together, and all the variables
4x^2-490=0
a = 4; b = 0; c = -490;
Δ = b2-4ac
Δ = 02-4·4·(-490)
Δ = 7840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7840}=\sqrt{784*10}=\sqrt{784}*\sqrt{10}=28\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{10}}{2*4}=\frac{0-28\sqrt{10}}{8} =-\frac{28\sqrt{10}}{8} =-\frac{7\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{10}}{2*4}=\frac{0+28\sqrt{10}}{8} =\frac{28\sqrt{10}}{8} =\frac{7\sqrt{10}}{2} $
| 4(x-4)=3x | | 5×=2x+36 | | 5×=2x×36 | | 5p-16=69 | | X-3=y,y=12 | | 3n=120-n | | 3(4y-5)=27 | | 71-x=100 | | p-2p=15-30 | | 2x9+2=3 | | 3t-2/4-2t+3/3=2-t | | -10x+42=-8x+42 | | 5x-18=3x-5 | | 7x-9/2=16 | | 3x^2-x-675=0 | | 4/9+2x=4x | | 6x+5=2×+6 | | 6x+5=2×+10 | | X×y=400 | | 314=314r^2 | | -32/9x=3 | | X/4+5=3x | | 9p+17=-1 | | 7(3-2x)+(4x-1)=40 | | 4x=3x+7. | | 2y=36+4y | | 5y+34=6+8y | | -5-2x=-2+x | | 3y+32=21+8y | | 164/3=2x | | -3x2+72x-285=0 | | 3x-3=2-4 |